Transformations and Software Modeling Languages:
Automating Transformations in UML

Jon Whittle

QSS Group Inc.
NASA Ames Research Center
Moffett Field
CA 94035
jonathw@email.arc.nasa.gov

Abstract. This paper investigates the role of transformations in the
Unified Modeling Language, specifically UML class diagrams with OCL
constraints. To date, the use of transformations in software modeling and
design has not been fully explored. A framework for expressing transfor-
mations is presented along with concrete examples that, for example,
infer new inheritance links, or transform constraints. In particular, a
technique for checking that two UML class diagrams are refactorings of
each other is described.

1 Introduction

Transformations play a central role in software engineering. They have found
widespread use in traditional applications such as optimizing compilers, as well
as in contemporary activities such as the use of XML and XSLT to translate
between different data formats. To date, however, the use of transformations
in practical software modeling has been limited (cf. [3,9,1] for the state of the
art). This paper begins to redress this imbalance by presenting a framework for
representing transformations of modeling notations along with examples of trans-
formations and their applications. There are a number of potential starring roles
for transformations. In particular, the widespread use of the Unified Modeling
Language (UML) [10] provides an immediate user base for model transformation
techniques. This paper focuses on applications of transformations within UML
(as opposed to transformations from UML to another language). Possible roles
for transformations include the following;:

1. model optimizations (transforming a given model to an equivalent one that
is optimized, in the sense that a given metric or design rule is respected);

2. consistency checks (transforming different viewpoints of the same model into
a common notation for purposes of comparison — cf. [12] for an example
of consistency between UML sequence diagrams and UML’s constraint lan-
guage OCL);

3. automation of parts of the design process (cf. [2] for recent work in this field)
using transformations.

The paper will give an extended example of the use of transformations in an
application of type (3) above. The example concerns the use of transformations
to show that two class diagrams (with additional constraints) are refactorings of
each other. Refactoring is the process of redesigning the structure of a software
artifact without changing its behavior. It is usually applied to code to make
it more readable or reusable, but can just as usefully be applied to models
of the code. Indeed, it could be argued that refactoring is more important at
the modeling level since restructurings are very common at this stage of the
development process. This paper presents a technique for checking refactorings,
along with an empirical example that demonstrates its use in practice.

Initial implementation of the transformation framework was done in the logic-
based programming language Maude [5]. Maude code consists of a set of equa-
tions and rewrite rules. The Maude execution engine applies these rules to trans-
form a given term and can be tailored to particular execution strategies using
Maude’s meta-level. Maude provides a suitable environment for experimenting
with and automating the application of transformation rules in UML. An im-
plementation of the abstract syntax of UML already exists as a set of Maude
theories [11]. This implementation faithfully mirrors the UML meta-model and
is a suitable basis for implementing UML-based transformations. Maude proved
to be a suitable environment for experimenting with transformation rules.

There have only been a small number of papers that directly deal with model-
level transformations in UML, and most of these have been concerned with the
formal semantics of the transformations and proofs that they maintain correct-
ness. [6] presents a set-theoretic formalization of what it means for one class
diagram to be a logical consequence of another: a well-formed diagram D’ fol-
lows from a well-formed diagram D if and only if every set assignment that
satisfies D also satisfies D'. A well-formed class diagram is one that conforms
to the UML specification [10]. A set assignment is the assignment to each class
a set of object instances, and to each association a set of links between object
instances. Informally, a set assignment then satisfies a class diagram, D, if the
assignments of objects and links respects the semantics (according to the UML
specification) of each of the class and association specifications in D. Although
the issue of correctness of transformations is an important one, it is not con-
sidered in this paper. Instead, the emphasis is on automation of transformation
applications. Automation means both implementing the transformation rules
so that they can be executed and automating the application of sequences of
transformation rules, which can be carried out by grouping rules together into
strategies and searching through the possible applications of the strategies to
achieve some goal. Although other work (e.g., [1,9,6]) has given examples of
transformations, no attempt has yet been made to automate the construction of
sequences of transformations that carry out a particular task.

2 Transformations in UML

2.1 Definitions

This paper will limit discussion to UML class diagrams annotated with OCL
constraints. In addition, advanced features of class diagrams (such as interfaces,
parameterized classes, etc.) will be ignored. In principle, many of these advanced
features can be described in terms of the more basic notions given (see [8]). A
UML class diagram is represented by a ternary mixfix operator:

Classes # Associations with Constraints

where Classes may represent either a UML class or type! and constraints are
general restrictions on the class diagram that will be given as OCL constraints in
this paper. Classes, Associations and Constraints are each sets whose elements
are formed from the following constructors:

class(className, Attributes, Operations)
association(assocName, assocEnd, , assocEnds)
oclConstraint(expression, model Element, stereotype)

where className and assocName are drawn from the set of class names and as-
sociation names, ClassNames and AssocNames, respectively. There are similar
sets, Attr Names and OpNames, to hold the names of attributes and operations.
Sets will be denoted using identifiers with upper case initial letters. Where nec-
essary, elements of sets will be written down separated by whitespace. Each class
has a set of attributes and a set of operations. Each constraint is formed from
an OCL expression, a model element that is the context of the constraint, and
a stereotype that denotes the kind of constraint (e.g., invariant, pre-condition).
Each association has two association ends, assocEnd; and assocEnds, repre-
sented as follows?:

assocEnd(className, Multiplicity, assocType, navigable)

The association end is attached to the classifier className. Multiplicity is a
set of (possibly unbounded) integers denoting the possible number of instances
of className associated with each instance of the classifier at the opposite end
of the association. assocType is either gen, agg, comp or assoc depending on
whether the association end is a generalization, aggregation, composition or reg-
ular association, respectively. navigable is a boolean value denoting whether or
not the association is navigable towards this association end. Note that general-
ization relations are only navigable in one direction (from child to parent) and
so such associations will always have false navigability from parent to child.

! throughout, class will be used to mean either class or type
% Association ends may also have orderings, qualifiers, rolenames, interface specifiers,
changeabilities and visibilities (see [10], page 3-71) but these are omitted in this

paper.

This formalization has been implemented in the logic-based programming
language Maude by researchers at the University of Murcia [11]. The transfor-
mation rules presented in the next section were also implemented in Maude using
this formalization as a basis.

2.2 Transformation Rules

This section presents a number of examples of transformation rules on UML
class diagrams with constraints.

Transitivity of associations The same model structure can be represented
in many different ways using a class diagram. Transformations that derive new
model elements (called enhancement transformations in [9]) augment a given
diagram with additional classes, associations or constraints that can be logically
inferred from the current structure. Enhancement transformations can be used
to make explicit design documentation that may have been left hidden by the
designer.

association(assocName1, assocEnd(c1, M1, a1,v1), assocEnd(cz, M1,at,v1))

association(assocNames, assocEnd(c2, Ms, a2, v2), assocEnd(cs, M3, ay, vy))

—

association(newAssocName,

assocEnd(c1, mult, (M, M1, M>, M3), ass1(a1,a}, az, as), nav: (v1, v, v2, va)),
(

assoctation

assocEnd(cs, multa (M, M1, M2, M), asss(a1, a1, as, a3), navs (v, v1, v2, v3)))
(assocName1, assocEnd(ci1, M1,a1,v1),assocEnd(ca, M1,at,v1))
association(

! ! 7
assocNames, assocEnd(c2, M2, as,v2), assocEnd(cs, My, as,v3))

Fig. 1. Transitivity of Associations: transitivityAssocs.

Figure 1 shows an example of an enhancement transformation that infers
new associations in a class diagram using the transitivity property of associa-
tions. Transformation rules should be interpreted such that if any part of a class
diagram is able to match with the LHS of the rule, then the rule is available
to fire. On firing, the sub-diagram matching with the LHS is replaced by the
RHS with the appropriate instantiations of variables. A rule that derives new
associations must infer the classes to which the association is attached as well as
the multiplicities and association types at each end of the association. The rule
in Figure 1 says that given an association between ¢; and ¢2 and an association
between c2 and c3, an association can be derived between ¢; and c3. mult; and
multy calculate the appropriate multiplicities at each end of the new associa-
tion. ass; and ass, determine the association types at each new association end.

el (1200 5200 go | 1.4 1| ek

7..800 2.20

(@

<1 <2 <3

1 =
I 1 * e

(b)

Fig. 2. (a) An application of transitivity of associations with bi-directional navigability
(b) An application of transitivity of associations with uni-directional navigability

assi(a1,a2,a3,a4) = a1 X as

assa2(a1,a2,03,04) = a2 X a4

X gen |agg |comp|assoc
gen |gen |agg |complassoc
agg |agg |agg |agg |assoc
comp|comp|comp |comp|assoc
assoc |assoc [assoc |assoc [assoc

Fig. 3. Composing association types.

nav, and nave calculate the navigabilities. Figure 2(a) shows an example of a
rule application where the association in bold is a derived association. Since each
instance of Cs has an association to instances of C7 and each instance of C5 is
part of instances of Cs, then each instance of C's must be related to instances of
C1. Hence, an association can be derived between C; and Cs. The appropriate
multiplicities on this derived association are calculated using an algorithm in [1].
The algorithm presented there computes new multiplicities for a derived associa-
tion between classes ¢ and ¢’ based on a traversal of an existing path from ¢ to ¢/
that collects and merges multiplicity information along the way. The algorithm
from [1] is called as a subroutine by the transformation rule in Figure 1.
Figure 3 shows how to derive association types for a newly inferred asso-
ciation. In Figure 2(a), assi(a1,a},as,ah) = assi(assoc, assoc, comp, assoc) =
assocx comp = assoc and assa(ay,al,as,a)) = assocx assoc = assoc. Note that

for some combinations of adjacent associations, only uni-directional associations
can be inferred. As an example, in Figure 2(b), given the associations between
C1, Cs and (s, (3, an association between C; and C3 can be inferred as shown,
but this association is not navigable from C5 to C;. Navigability from C; to Cj
is legal because each instance of (' is part of an instance of Cs, and hence is
part of an instance of C3. In the opposite direction, however, an instance of Cs
need not also be an instance of Cs and hence may not have an association to Cj.
Navigability is calculated in a similar fashion to association types except that
the x operator is replaced by boolean A:

navy (vy,v2,v3,04) = v A vs

navs (vy, va,v3,04) = U3 Ay

In Figure 2(b), navy (v1, vy, va,vh) = trueAfalse = false and navs(vy, v, va,v5) =
true Atrue = true, hence the derived association (in bold) has navigability only
towards Cs.

The transitivity rule is similar to an example transformation given in [7]
except that it generalizes the notion of transitivity to all association types.

Introducing subclasses A much simpler transformation rule is given in Figure
4. This rule introduces a new subclass, child, of parent that satisfies additional
constraints ¥. Note that ¥ need bear no relation to @ since they are new (possibly
empty) constraints that characterize the new subclass. The new subclass child
inherits the attributes, operations and constraints of its parent (an alternative
would be for another rule to take care of propagating the parent constraints to
the child).

class(parent, Attrs, Ops) # Associations
with oclConstraint(®, parent, < invariant >>)
—
class(parent, Attrs, Ops)
class(child, Attrs, Ops) #
association(newAssocName, assocEnd(parent, {1}, gen, true),
assocEnd(child, {0, 1}, assoc, false))
Associations with
oclConstraint(®, parent, < invariant >>>)
oclConstraint(®, child, < invariant >>)
oclConstraint(¥, child, < invariant >>)

Fig. 4. Introduction of Constrained Subclasses: introduceSubclass.

Classes # assoc Associations
with oclConstraint(if cond then exp: else exps endif | class, st) Constraints
=

U . - . .
Classes # assoc Associations with Constraints

if cond holds in class

and ezp can be eliminated by replacing assoc with assoc’

Fig. 5. Inferring associations from constraints: inv2assoc.

Relating constraints and associations Transformations on class diagrams
with constraints must relate class diagram elements and constraint expressions.
Constraints may express information that could otherwise have been (partially)
expressed using classes and associations. Transformations that translate between
these alternative viewpoints would be useful in model optimization. As an ex-
ample, OCL constraints on the number of instances of a particular class could
also be expressed using association multiplicities. If, in fact, both are used, it is
possible either that the two are in conflict with each other or that one is sub-
sumed by the other. In the latter case, eliminating the subsumed constraint or
association will lead to generation of more efficient code since the redundancy is
removed.

Figure 5 gives an example transformation rule for relating constraints and
UML associations by updating an association according to the constraints. The
rule is conditional, in the sense that the rule only fires if the two conditions
associated with it hold. The rule shows how a conditional OCL constraint can
be eliminated by updating the appropriate association. The idea is that if the
condition cond holds in the class which owns the constraint, then exp; must be
true, and, in some cases, the truth of exp; can be used to modify the association
assoc into assoc'. In the form of the rule given here, the rule only fires if the
conditional constraint can be completely rewritten as an association assoc’. In
general, however, only part of a constraint may be eliminated.

As a concrete example of a rule application, in Figure 6, each instance of
class C can be related to either zero or two instances of Cs. Suppose that there
is an additional OCL constraint on class Ci:

context C; inv:
if Cond then itsElements->size=2
else itsElements->size=0 endif

If it can be shown that Cond holds as an invariant in C; (e.g., if it is satisfied
by some other constraint of Cp), then it can be deduced that each instance
of C1 must associate with exactly two instances of Cy and so, the multiplicity
of itsElements can be updated to read 2 rather than 0,2. Similarly, there is

another transformation rule that applies in the case that cond does not hold. In
this case, the multiplicity could be updated to read 0. Note, however, that the
latter case relies on the closed world assumption — i.e., failure to show cond is
an assumption that cond is false.

c1 itsElements B> c2

1 0,2

Fig. 6. Updating Multiplicities according to Constraints.

Clearly, relating constraints to model elements requires some non-trivial in-
ferences in general. In particular, in this example, it needs to be shown that cond
holds in class and more generally, it may be useful to make non-trivial inferences
about how exp; relates to the association being updated. The level of sophisti-
cation required depends on the application. For a model optimization tool, the
approach followed in optimizing compilers of making many simple inferences but
not attempting more complex ones will work well. For some applications, how-
ever, more complex inferences may be required. Further work will investigate
the use of “off-the-shelf” decision procedures for fragments of first-order logic,
such as the Stanford Validity Checker [4], which could be useful for dealing with
a range of complex subproblems expressed in OCL.

Inferring new generalizations Previously, it was shown how new associations
(including generalizations) can be inferred by composing existing associations.
Another way of deriving new generalizations is to compare the constraints, asso-
ciations, attributes and operations of two existing classes (see Figure 7). Given
classes parent and child, if it can be shown that all the constraints of parent
hold in child and similarly, for the associations, operations and attributes of
parent, then a new generalization association can be inferred from child to
parent. In Figure 7, constraints is an operation that, for a given set of con-
straints (indicated by its argument), returns the subset of those constraints that
apply to the class to which the operation is attached. Similarly for the operation
associations. Comparison of constraints and associations is syntactical compar-
ison of sets. Hence, the rule is rather weak in the sense that a constraint of
parent may actually hold in child but may not be in the same syntactical form.
In this case, for the rule to apply, the constraint must first be transformed into
the same form. In general, this may involve non-trivial reasoning.

Three other transformation rules will be mentioned because they will be
used as part of the example in the following section. inheritConstr, inheritAttr
and inheritOp are transformations that propagate constraints, attributes and
operations, respectively, from a parent class to its children classes. They are
simple transformations that impose the class diagram restrictions that a child

class(parent, Attrs,, Opsi) class(child, Attrss, Ops2) # Associations with Constraints
—

class(parent, Attrs,, Ops1) class(child, Attrss, Ops2) #

association(newAssocName, assocEnd(parent, {1}, gen), assocEnd(child, {0,1}, assoc))

Associations with Constraints

if parent.constraints(Constraints) C child.constraints(Constraints)

and parent.associations(Associations) C child.associations(Associations)
and Attrs; C Attrss

and Opsi1 C Ops2

Fig. 7. Inferring generalizations: inferGen.

class must have (at least) the same constraints, attributes and operations as its
parent.

3 Checking Model Refactorings

Refactoring is the process of restructuring an existing software artifact whilst
maintaining its behavior. Refactoring has usually been considered only at the
code level, but, in fact, refactoring is just as important during the design phase.
Early design work typically involves iterative updates of the design at hand and
restructurings are often a necessary prerequisite for these updates to take place.
The main problem with refactorings is that it is easy to introduce design bugs.
This section shows how transformations can be used to check that a modified
design is a refactoring of an existing one, and hence show that no unforeseen
errors have been introduced. A technique will be presented for automatically
checking that two UML class diagrams are refactorings of each other. The tech-
nique is illustrated using the example class diagrams of Figures 9 and 10 and
the transformations from the preceding section.

3.1 Checking Procedure

A procedure for checking if two class diagrams D; and D, are refactorings of
each other is now presented. This procedure is based on difference matching, i.e.,
looking for differences between Dy and D, and applying transformation rules so
as to eliminate them. Some transformation rules (e.g., inheritConstr and inher-
itAttr) can be applied exhaustively to a class diagram as they do not involve
choice points that would lead to a large search space. Rules such as introduce-
Subclass, however, are akin to the cut rule in first order logic proof systems in

that, when applied to a single class diagram, they require a “eureka step” to in-
stantiate an unbound variable. Difference matching provides the means to avoid
these eureka steps.

There are three main definitions that form the checking procedure: the defi-
nition of a mapping, ¢, to map the elements of D; into those of D5, the definition
of difference matching to translate ¢(D;) into Dy and the definition of strategies
for automating the rule applications involved in difference matching. Defining
strategies involves the development of heuristics to reduce the search space. This
is not dealt with in this paper.

Mapping Model Elements During a restructuring operation, the names of
model elements may be changed. Since this should not effect the validity of
the refactoring, however, the model element names (i.e., the association, class,
attribute and operation names) of D, are first mapped into those of D,. For the
example presented in this paper, it is assumed that there have been no renamings
and so the mapping, ¢, is just the identity mapping. More generally, however, ¢
could be explicitly given by the user by specifying relationships between model
elements using UML’s < trace > stereotype. The < trace > stereotype denotes
a historical connection between two model elements that represent the same
concept at different levels of meaning. Hence, a < trace > stereotype could be
used to connect concepts that have been renamed. The construction of ¢ could
also be (partially) automated by a tool that keeps track of renaming of model
elements and inserts the appropriate < trace > relationships.

Difference matching A distinction shall be made between transformation
rules that can be applied exhaustively without fear of search space explosion
(normal rules) and those rules whose application must be controlled through
the use of heuristics (non-normal rules). Of the rules presented in this paper,
inheritConstr, inheritAttr and inheritOp fall into the normal category while all
other rules are non-normal. Non-normal rules are applied only in the context of
a particular application using heuristics that have been designed for that appli-
cation. As an example, consider introduceSubclass from Section 2.2. In order for
this rule to apply, the variable child on the RHS of the rule must be instanti-
ated with the name of a new subclass and ¥ must be instantiated with a set of
constraints which hold over this new subclass. Clearly, exhaustive application of
this rule introduces an infinite search space. Difference matching can be used,
however, to choose the instantiations for child and ¥, by comparing the source
and target class diagrams and introducing new child subclasses to make the
source and target match.

Another rule for which difference matching is required is transitivityAssocs.
Exhaustive application of this rule does not result in an infinite search space
but does introduce up to n? + n new associations for a class diagram with n
classes. This is because, by definition of a class diagram, each class has at least
one association to some other class, ¢, and hence, by transitivity, there is an
association to all classes that can be reached from c. For large class diagrams,

the number of derived associations can become unmanageable and so difference
matching is used to only introduce new associations as necessary.

Input. Class diagrams D; and D
e Apply all normal rules to ¢(D1) and D»
e Match the class structure of ¢(D1) and Do:
for each class ¢ € ¢(D1)\D2
find a set of rules R that introduces ¢ into D»
(similarly, for ¢ € D2\¢p(D1))
Apply the rules in R to D>
Apply all normal rules exhaustively to D>
e Match the associations in ¢(D;) and Dy:
find and apply R as above and
apply all normal rules exhaustively
e Match the constraints in ¢(D;) and Dj:
find and apply R as above and
apply all normal rules exhaustively

e repeat

Fig. 8. Difference matching class diagrams.

An outline of difference matching is given in Figure 8. Matching classes
amounts to transforming the source class into a new class with the same at-
tributes, operations and constraints as the target class. Matching associations
amounts to transforming the source association into a new one with the same
association end class names, multiplicities, navigabilities and association types
as the target association. Note that R may contain both normal and non-normal
rules, but after application of the rules in R, all normal rules are applied (which
can be done efficiently) to propagate as much information as possible given the
new model elements that have been introduced. For example, if a new subclass
has been introduced, normal rules will be applied to make the subclass inherit
attributes and operations from its parent.

Clearly, the procedure in Figure 8 requires a judicious control of applications
of the rules in R. The optimal control in the case of the refactoring application is
the subject of current research and in the example which is about to be presented,
the key choice points were decided manually. However, the split of rules into
normal and non-normal rules already provides a good amount of control. Normal
rules can be applied without user interaction. It is sometimes necessary, however,
to impose an ordering on multiple applications of the same normal rule. As an
example, the inheritAttr rule must be applied in the order of the inheritance
graph — i.e., the top-level parent class is first chosen to be the root of this
graph and the child is its first subclass, so that the first application of the
rule propagates attributes from the root parent to its first child. Subsequent
instantiations of parent and child are chosen by following a depth-first search over

the inheritance structure. This ordering ensures that all attributes are included
in all appropriate subclasses.

3.2 Example

An example of checking refactorings will now be presented. The example comes
from design documentation for a research prototype under development at NASA
Ames Research Center for generating code for avionics applications. The design
subset considered in this paper is part of a domain model for matrix factor-
izations. Matrix factorizations are important for avoiding round-off errors in
geometric state estimation algorithms (i.e., algorithms that estimate the state —
position, velocity, etc. — of a vehicle given noisy sensor measurements). Various
standard factorization tricks can be used to ensure a numerically stable imple-
mentation of a state estimation algorithm. Two examples are decomposition of a
matrix into cholesky factors or rank one factors. A cholesky factor of a symmet-
ric nonnegative definite (SND) matrix M is a matrix C such that CCT = M,
where C' is triangular. A rank one factor is a cholesky factor of the rank one
modified matrix M + vv? where v is a vector. Cholesky factors only exist for
SND matrices and rank one factors only exist for symmetric positive definite
(SPD) matrices. These restrictions are captured by constraints ¢; and @5 in
Figure 11.

Figure 9 (along with constraints in Figure 11) shows the initial attempt at a
domain model for matrix factorizations. As part of a refinement, it was decided
that Figure 10 (constraints in Figure 12) would serve as a better model for
the domain. Additional matrix classes have been added and given appropriate
OCL constraints. The addition of classes for SND and SNP matrices allows &,
and &, to be represented directly as multiplicity constraints on the relevant
associations and so ¢, and &5 do not apply to Figure 10 (note, however, that
&3 does still apply). The other main point of interest is that a new subclass
TriangularMatrix has been introduced. Since cholesky factors are triangular,
CholeskyFactor has been subclassed to TriangularMatrix in Figure 10.

Figures 9 and 10 represent the same information but are structurally differ-
ent. This section will show how to use transformations to show that Figure 10 is
a refactoring of Figure 9, or equivalently to transform Figure 9 into Figure 10.
Renaming has not taken place in this example, so the mapping ¢ is the identity.
Difference matching proceeds as follows.

Step I: match class structures After applying all normal rules (inherit Attr,
inheritOp and inheritConstr) to both class diagrams under consideration (which
makes explicit all the attributes and constraints in the diagrams), according to
the difference matching procedure, the first step should be to match the class
structures of the two class diagrams. By applying introduceSubclass repeatedly,
each of the matrix subclasses from Figure 10 that do not appear in Figure 9 can
be introduced into Figure 9 along with their appropriate constraints. Normal
rules can then be applied so that each of these new subclasses in Figure 9 inherit
the attributes, operations and constraints from class Matrix.

Step II: match associations (1) The new subclasses, SymmetricDefinite-
NonNegMatrix (SND) and SymmetricDefinitePositiveMatrix (SPD), intro-
duced into Figure 9 in Step I do not have the same associations as the cor-
responding classes in Figure 10. Since the subclasses were introduced by the
introduceSubclass rule, they currently have only a single association — a gener-
alization from themselves to Matrix. Associations belonging to Matrix can be in-
troduced, however, using transitivity Assocs to propagate the choleskyFactors
and rankOneFactors associations resulting in the model fragment in Figure 13.
Note that the multiplicities in Figures 10 and 13 do not quite match. However,
since inheritConstr was applied exhaustively in Step I, SND and SPD both have
the constraints 1 and ®,. Using the rule inv2assoc, #1 and P, can be replaced
by updating the multiplicities on these associations. This results in the multi-
plicities at the CholeskyFactor end of SND becoming 2 rather than 0,2, and
similarly at the RankOneFactor end of SPD. On the other hand, the closed world
assumption (see section 2.2) allows for the removal of the choleskyFactors as-
sociation from SPD and the rankOneFactors association from SND (since they
are uni-directional associations with a zero multiplicity at their navigable end).
In a similar way, the choleskyFactors and rankOneFactors associations and
constraints ¢; and @, can be propagated to all other subclasses of Matrix. In
each of these cases, both associations are eliminated.

Step III: match associations (2) The final step is to introduce the inheritance
link from CholeskyFactor to TriangularMatrix in the transformed version of
Figure 9. This can be done using the rule inferGen, since the matrices have the
same operations and attributes, all constraints of TriangularMatrix hold in
CholeskyFactor, and all associations of TriangularMatrix are also associations
of CholeskyFactor.

The transformed version of 9 and 10 now look the same, and hence it has
been shown that the two matrix models are refactorings of each other.

4 Conclusions and Further Work

This paper has presented a number of concrete examples of transformations
over the Unified Modeling Language. This is the first paper (of which the author
is aware) that has considered how to automate such transformations and has
done so in the context of checking that two class diagrams (with constraints)
are refactorings of each other. Although full automation is still the subject of
research, a semi-automated procedure has been presented, and demonstrated on
a real example. The notion of correctness of UML transformations used in this
research is based on that given in [6] but it has not been shown here that each
individual transformation is correct in this sense. Rather, the focus is on moving
towards automation of the application of transformations for a suitable domain.
Other authors are also considering the notion of transformation correctness (e.g.,
[7]) and it is likely that their techniques will be useful in this instance.

Matrix

1 -definite : boolean
-elementary : boolean
-nonnegative : boolean
-positive : boolean
-symmetric : boolean
-triangular : boolean

1
choleskyFactors

0,2

CholeskyFactor

rankQneFactors

RankOneFactor Vector

02 1 1

Fig. 9. Matrix Domain Model Before Refactoring.

$; context Matrix inv:
if symmetric=true and nonnegative=true
and definite=true
then choleskyFactors->size=2
else choleskyFactors->size=0 endif

d5 context Matrix inv:
if symmetric=true and positive=true
and definite=true
then rankOneFactors->size=2
else choleskyFactors->size=0 endif
&3 context CholeskyFactor inv:
triangular=true

Fig. 11. Constraints for Figure 9.

Matrix

-definite : boolean
-elementary : boolean
-nonnegative : boolean
-positive : boolean
-symmetric : boolean
-triangular : boolean

T

TriangularMatrix

SymmetricMatrix k| SymmetricElementaryMatrix CholeskyFactor

2
T +choleskyFactors
SymmetricDefiniteMatrix SymmetricDefiniteNonNegMatrix 1
T RankOneFactor
SymmetricDefinitePositiveMatrix 2 1
1
+rankOneFactors
1 Vector

Fig. 10. Matrix Domain Model After Refactoring.

&3 as before

&, context TriangularMatrix inv:
triangular=true
&5 context SymmetricMatrix inv:

symmetric=true

&¢ context SymmetricDefiniteMatrix inv:
symmetric=true and definite=true

&7 context SymmetricElementaryMatrix inv:
symmetric=true and elementary=true

P context SymmetricDefiniteNonNegMatrix inv:
symmetric=true and definite=true
and nonnegative=true

P9 context SymmetricDefinitePositiveMatrix inv:

symmetric=true and definite=true
and positive=true

Fig. 12. Constraints for Figure 10.

choleskyFactors

1

SymmetricDefiniteNonNegMatrix l

[|
L 1

RankOneFactor

0,2

SymmetricDefinitePositiveMatrix

[|
L 1

rankOneFactors

1

Fig. 13. Partially refactored matrix model.

References

1.

10.

11.

12.

J. Alemdan, A. Toval, and J. Hoyos. Rigorously transforming UML class diagrams.
In Proceedings of the V Workshop MENHIR (Models, Environments and Tools for
Requirements Engineering), Universidad de Granada, Spain, 2000.

. Workshop on Automating Object Oriented Software Development Methods, June

2001. http://trese.cs.utwente.nl/ecoop0l-acom/.

J. Araijo, R. France, A. Toval, and J. Whittle. Workshop on Inte-
gration and Transformation of UML Models, June 2002. http://www-
ctp.di.fct.unl.pt/ ja/wituml02.htm.

C. Barrett, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In Proceedings of FMCAD’96, November 1996.

M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Theoretical
Computer Science, 2001. To appear.

A. Evans. Reasoning with UML class diagrams. In Workshop on Industrial Strength
Formal Methods (WIFT98). IEEE Press, 1998.

R. France. A problem-oriented analysis of basic UML static requirements modeling
concepts. ACM SIGPLAN Notices, 34(10):57-69, 1999.

M. Gogolla and M. Richters. Equivalence rules for UML class diagrams. In
J. Bézivin and P.-A. Muller, editors, The Unified Modeling Language, UML’98 -
Beyond the Notation. First International Workshop, Mulhouse, France, June 1998,
pages 87-96, 1998.

K. Lano and A. Evans. Rigorous development in UML. In Fundamental Approaches
to Software Engineering, FASE’99. Springer-Verlag, 1999.

Unified Modeling Language specification version 1.4, September 2001. Available
from The Object Management Group (http://www.omg.org).

A. Toval and J. Alemédn. Formally modeling UML and its evolution: a holistic
approach. In S. Smith and C. Talcott, editors, Formal Methods for Open Object-
based Distributed Systems IV, pages 183—206, 2000.

J. Whittle and J. Schumann. Generating Statechart Designs From Scenarios. In
Proceedings of International Conference on Software Engineering (ICSE 2000),
pages 314-323, Limerick, Ireland, June 2000.

